6,411 research outputs found

    Design of the software development and verification system (SWDVS) for shuttle NASA study task 35

    Get PDF
    An overview of the Software Development and Verification System (SWDVS) for the space shuttle is presented. The design considerations, goals, assumptions, and major features of the design are examined. A scenario that shows three persons involved in flight software development using the SWDVS in response to a program change request is developed. The SWDVS is described from the standpoint of different groups of people with different responsibilities in the shuttle program to show the functional requirements that influenced the SWDVS design. The software elements of the SWDVS that satisfy the requirements of the different groups are identified

    Report of the sensor readout electronics panel

    Get PDF
    The findings of the Sensor Readout Electronics Panel are summarized in regard to technology assessment and recommended development plans. In addition to two specific readout issues, cryogenic readouts and sub-electron noise, the panel considered three advanced technology areas that impact the ability to achieve large format sensor arrays. These are mega-pixel focal plane packaging issues, focal plane to data processing module interfaces, and event driven readout architectures. Development in each of these five areas was judged to have significant impact in enabling the sensor performance desired for the Astrotech 21 mission set. Other readout issues, such as focal plane signal processing or other high volume data acquisition applications important for Eos-type mapping, were determined not to be relevant for astrophysics science goals

    Optimal query complexity for estimating the trace of a matrix

    Full text link
    Given an implicit n×nn\times n matrix AA with oracle access xTAxx^TA x for any xRnx\in \mathbb{R}^n, we study the query complexity of randomized algorithms for estimating the trace of the matrix. This problem has many applications in quantum physics, machine learning, and pattern matching. Two metrics are commonly used for evaluating the estimators: i) variance; ii) a high probability multiplicative-approximation guarantee. Almost all the known estimators are of the form 1ki=1kxiTAxi\frac{1}{k}\sum_{i=1}^k x_i^T A x_i for xiRnx_i\in \mathbb{R}^n being i.i.d. for some special distribution. Our main results are summarized as follows. We give an exact characterization of the minimum variance unbiased estimator in the broad class of linear nonadaptive estimators (which subsumes all the existing known estimators). We also consider the query complexity lower bounds for any (possibly nonlinear and adaptive) estimators: (1) We show that any estimator requires Ω(1/ϵ)\Omega(1/\epsilon) queries to have a guarantee of variance at most ϵ\epsilon. (2) We show that any estimator requires Ω(1ϵ2log1δ)\Omega(\frac{1}{\epsilon^2}\log \frac{1}{\delta}) queries to achieve a (1±ϵ)(1\pm\epsilon)-multiplicative approximation guarantee with probability at least 1δ1 - \delta. Both above lower bounds are asymptotically tight. As a corollary, we also resolve a conjecture in the seminal work of Avron and Toledo (Journal of the ACM 2011) regarding the sample complexity of the Gaussian Estimator.Comment: full version of the paper in ICALP 201

    San Jacinto Intrusive Complex: 2. Geochemistry

    Get PDF
    Rocks from three large (>100^2 km) tonalitic intrusions exposed in the San Jacinto Mountains of southern California show a restricted compositional range of between 63 and 68 wt % SiO_2 for all but volumetrically minor felsic differentiates (with Si0_2≈70 wt %). All rocks with less than 65.5 wt % SiO_2 show linear element-element covariation. Felsic differentiates have characteristics (higher SiO_2, K_2O, Rb, Ba, U; higher and variable rare earth elements) consistent with derivation by in situ fractionation; rocks with between 65.5 and 70 wt % SiO_2 have intermediate characteristics and are interpreted as derived from liquids formed by mixing “primitive” liquids with fractionated liquids within an intermittently recharged, continuously solidifying magma chamber. Mafic inclusions extend the compositional trends of the mafic tonalites to 55 wt % SiO_2. The chemical variations of both inclusions and more mafic tonalites are interpreted as resulting from processes acting before injection of their parental liquids into the observed crustal magma chambers. Effects of chamber processes are minor for all but the most felsic rocks. The major effect of recharge is to buffer the thermal and chemical properties of liquids within the magma chambers, yielding large volumes of relatively homogeneous tonalite. For those elements where the bulk distribution coefficient is between about 0.5 and 2, concurrent recharge and solidification produces rocks that closely approximate the composition of the added liquids. Estimated Rayleigh numbers for these liquids are high (>10^(10)), implying convection throughout much of the solidification history of each chamber. Existence of trace element variations within analyzed rocks imply that convection was not totally efficient at homogenizing the various batches of liquid added to each chamber

    A Monte Carlo Method for Fermion Systems Coupled with Classical Degrees of Freedom

    Full text link
    A new Monte Carlo method is proposed for fermion systems interacting with classical degrees of freedom. To obtain a weight for each Monte Carlo sample with a fixed configuration of classical variables, the moment expansion of the density of states by Chebyshev polynomials is applied instead of the direct diagonalization of the fermion Hamiltonian. This reduces a cpu time to scale as O(Ndim2logNdim)O(N_{\rm dim}^{2} \log N_{\rm dim}) compared to O(Ndim3)O(N_{\rm dim}^{3}) for the diagonalization in the conventional technique; NdimN_{\rm dim} is the dimension of the Hamiltonian. Another advantage of this method is that parallel computation with high efficiency is possible. These significantly save total cpu times of Monte Carlo calculations because the calculation of a Monte Carlo weight is the bottleneck part. The method is applied to the double-exchange model as an example. The benchmark results show that it is possible to make a systematic investigation using a system-size scaling even in three dimensions within a realistic cpu timescale.Comment: 6 pages including 4 figure

    Calculation of Densities of States and Spectral Functions by Chebyshev Recursion and Maximum Entropy

    Full text link
    We present an efficient algorithm for calculating spectral properties of large sparse Hamiltonian matrices such as densities of states and spectral functions. The combination of Chebyshev recursion and maximum entropy achieves high energy resolution without significant roundoff error, machine precision or numerical instability limitations. If controlled statistical or systematic errors are acceptable, cpu and memory requirements scale linearly in the number of states. The inference of spectral properties from moments is much better conditioned for Chebyshev moments than for power moments. We adapt concepts from the kernel polynomial approximation, a linear Chebyshev approximation with optimized Gibbs damping, to control the accuracy of Fourier integrals of positive non-analytic functions. We compare the performance of kernel polynomial and maximum entropy algorithms for an electronic structure example.Comment: 8 pages RevTex, 3 postscript figure

    Aquatic polymers can drive pathogen transmission in coastal ecosystems.

    Get PDF
    Gelatinous polymers including extracellular polymeric substances (EPSs) are fundamental to biophysical processes in aquatic habitats, including mediating aggregation processes and functioning as the matrix of biofilms. Yet insight into the impact of these sticky molecules on the environmental transmission of pathogens in the ocean is limited. We used the zoonotic parasite Toxoplasma gondii as a model to evaluate polymer-mediated mechanisms that promote transmission of terrestrially derived pathogens to marine fauna and humans. We show that transparent exopolymer particles, a particulate form of EPS, enhance T. gondii association with marine aggregates, material consumed by organisms otherwise unable to access micrometre-sized particles. Adhesion to EPS biofilms on macroalgae also captures T. gondii from the water, enabling uptake of pathogens by invertebrates that feed on kelp surfaces. We demonstrate the acquisition, concentration and retention of T. gondii by kelp-grazing snails, which can transmit T. gondii to threatened California sea otters. Results highlight novel mechanisms whereby aquatic polymers facilitate incorporation of pathogens into food webs via association with particle aggregates and biofilms. Identifying the critical role of invisible polymers in transmission of pathogens in the ocean represents a fundamental advance in understanding and mitigating the health impacts of coastal habitat pollution with contaminated runoff

    Fine root dynamics and trace gas fluxes in two lowland tropical forest soils

    Get PDF
    Fine root dynamics have the potential to contribute significantly to ecosystem-scale biogeochemical cycling, including the production and emission of greenhouse gases. This is particularly true in tropical forests which are often characterized as having large fine root biomass and rapid rates of root production and decomposition. We examined patterns in fine root dynamics on two soil types in a lowland moist Amazonian forest, and determined the effect of root decay on rates of C and N trace gas fluxes. Root production averaged 229 ( 35) and 153 ( 27) gm 2 yr 1 for years 1 and 2 of the study, respectively, and did not vary significantly with soil texture. Root decay was sensitive to soil texture with faster rates in the clay soil (k5 0.96 year 1) than in the sandy loam soil (k5 0.61 year 1),leading to greater standing stocks of dead roots in the sandy loam. Rates of nitrous oxide (N2O) emissions were significantly greater in the clay soil (13 1ngNcm 2 h 1) than in the sandy loam (1.4 0.2 ngNcm 2 h 1). Root mortality and decay following trenching doubled rates of N2O emissions in the clay and tripled them in sandy loam over a 1-year period. Trenching also increased nitric oxide fluxes, which were greater in the sandy loam than in the clay. We used trenching (clay only) and a mass balance approach to estimate the root contribution to soil respiration. In clay soil root respiration was 264–380 gCm 2 yr 1, accounting for 24% to 35% of the total soil CO2 efflux. Estimates were similar using both approaches. In sandy loam, root respiration rates were slightly higher and more variable (521 206 gCm2 yr 1) and contributed 35% of the total soil respiration. Our results show that soil heterotrophs strongly dominate soil respiration in this forest, regardless of soil texture. Our results also suggest that fine root mortality and decomposition associated with disturbance and land-use change can contribute significantly to increased rates of nitrogen trace gas emissions

    A new set of BXD recombinant inbred lines from advanced intercross populations in mice

    Get PDF
    BACKGROUND: Recombinant inbred (RI) strains are an important resource for mapping complex traits in many species. While large RI panels are available for Arabidopsis, maize, C. elegans, and Drosophila, mouse RI panels typically consist of fewer than 30 lines. This is a severe constraint on the power and precision of mapping efforts and greatly hampers analysis of epistatic interactions. RESULTS: In order to address these limitations and to provide the community with a more effective collaborative RI mapping panel we generated new BXD RI strains from two independent advanced intercrosses (AI) between C57BL/6J (B6) and DBA/2J (D2) progenitor strains. Progeny were intercrossed for 9 to 14 generations before initiating inbreeding, which is still ongoing for some strains. Since this AI base population is highly recombinant, the 46 advanced recombinant inbred (ARI) strains incorporate approximately twice as many recombinations as standard RI strains, a fraction of which are inevitably shared by descent. When combined with the existing BXD RI strains, the merged BXD strain set triples the number of previously available unique recombinations and quadruples the total number of recombinations in the BXD background. CONCLUSION: The combined BXD strain set is the largest mouse RI mapping panel. It is a powerful tool for collaborative analysis of quantitative traits and gene function that will be especially useful to study variation in transcriptome and proteome data sets under multiple environments. Additional strains also extend the value of the extensive phenotypic characterization of the previously available strains. A final advantage of expanding the BXD strain set is that both progenitors have been sequenced, and approximately 1.8 million SNPs have been characterized. This provides unprecedented power in screening candidate genes and can reduce the effective length of QTL intervals. It also makes it possible to reverse standard mapping strategies and to explore downstream effects of known sequence variants

    Competition Between Antiferromagnetic Order and Spin-Liquid Behavior in the Two-Dimensional Periodic Anderson Model at Half-Filling

    Full text link
    We study the two-dimensional periodic Anderson model at half-filling using quantum Monte Carlo (QMC) techniques. The ground state undergoes a magnetic order-disorder transition as a function of the effective exchange coupling between the conduction and localized bands. Low-lying spin and charge excitations are determined using the maximum entropy method to analytically continue the QMC data. At finite temperature we find a competition between the Kondo effect and antiferromagnetic order which develops in the localized band through Ruderman-Kittel-Kasuya-Yosida interactions.Comment: Revtex 3.0, 10 pages + 5 figures, UCSBTH-94-2
    corecore